MTH 201: Multivariable Calculus and Differential Equations

Homework I

(Due 19/08)

1. Let f be a scalar field defined on a set S, and let $c \in \mathbb{R}$. The set

$$L_c(f) = \{ x \in S \,|\, f(x) = c \}$$

is called the *level set of f at c*. For each of the following, assume that S is the whole of \mathbb{R}^n , and sketch $L_c(f)$.

- (a) $f(x,y) = e^{xy}, c = e^{-2}, 1, e^3$.
- (b) $f(x, y, z) = \sin(x^2 + y^2 + z^2), \ c = -\frac{1}{2}, \frac{\sqrt{2}}{2}, 1.$
- 2. In each of the following, let S be the set of all points in \mathbb{R}^n satisfying the given inequalities. Determine whether S is open, closed, both open and closed, or neither open nor closed. Also determine ∂S
 - (a) xy < 1.
 - (b) $x \ge 0$ and y > 0.
 - (c) $(x^2 + y^2 1)(4 x^2 y^2) > 0.$
 - (d) x + y + z < 1 and x > 0, y > 0, z > 0.
 - (e) $|x| \le 1$, |y| < 1, and |z| < 1.
 - (f) $1 < x^2 + y^2 \le 2$
 - (g) $y \ge x^2$ and $|x| \le 2$.

(h)
$$x^2 + y^2 \ge 0$$
.

- 3. Prove that the following sets are open in \mathbb{R}^n .
 - (a) \emptyset and \mathbb{R}^n .
 - (b) The union of any arbitrary collection of open subsets.
 - (c) The intersection of any finite collection of open subsets.
 - (d) The product of any finite collection of open subsets.
 - (e) The complement of any finite subset.
 - (f) The interior and exterior of any subset.
- 4. Prove that the following sets are closed in \mathbb{R}^n .
 - (a) The intersection of any arbitrary collection of closed subsets.
 - (b) The union of any finite collection of closed subsets.
 - (c) Any finite set.
 - (d) The boundary of any subset. (Hint: Show that $\mathbb{R}^n = S^\circ \sqcup \operatorname{ext}(S) \sqcup \partial S$.)
- 5. Give counterexamples to disprove the following statements.
 - (a) The intersection of any arbitrary collection of open subsets of \mathbb{R}^n is open.
 - (b) The union of any arbitrary collection of closed subsets \mathbb{R}^n is closed.

- 6. If $S \subset \mathbb{R}^n$, then prove the following:
 - (a) $\operatorname{ext}(S) = (\mathbb{R}^n \setminus S)^{\circ}$.
 - (b) S is closed if and only if $S = S^{\circ} \cup \partial S$.
- 7. For each of the following scalar fields, determine the set of points (x, y) such that f is continuous.

(a)
$$f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$$
.
(b) $f(x, y) = x^{y^2}$.
(c) $f(x, y) = \cos^{-1}\left(\sqrt{\frac{x}{y}}\right)$.
(d) $f(x, y) = \frac{\cos(x^2)}{y}$.

8. For each of the following scalar fields, show that $\lim_{x\to 0} [\lim_{y\to 0} f(x,y)] \neq \lim_{y\to 0} [\lim_{x\to 0} f(x,y)].$

(a)
$$f(x,y) = \frac{x-y}{x+y}$$
, if $x \neq -y$.
(b) $f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right), & \text{if } y \neq 0\\ 0, & \text{if } y = 0 \end{cases}$

9. For each of the following scalar fields, determine if it is possible to define f(0,0) so as to make f continuous at the origin.

(a)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
, if $(x,y) \neq (0,0)$.
(b) $f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$, if $(x,y) \neq (0,0)$.